A. G \& S. G Siddhartha Degree College of Arts and Science (Autonomous), Vuyyuru

(An Autonomous College in the jurisdiction of Krishna University, Machilipatnam)

STATISTICS	STATIIB	2021-22 Onwards	B.Sc.(MSCs)

SEMESTER- I
 PAPER - I
 No of Credits: 4

DESCRIPTIVE STATISTICS AND THEORY OF PROBABILITY

S. No	PROGRAMME OUTCOMES
POI	Remember the basic concepts of statistics at different levels and to understand them for gaining of knowledge.
PO2	Apply the statistical techniques in the analysis of data and also acquire knowledge in optimization techniques.
$\mathbf{P O 3}$	Facilitate students to acquire flair knowledge to estimate the values in real life problems.

COURSE OUTCOMES

CO.NO	$\|c\|$ Upon successful completion of this course, students should have the knowledge and skills to:	Mapping
$\mathbf{C O 1}$	knowledge of various types of data, their organization and evaluation of summary measures such as non- central and central moments, measures of skewness and kurtosis.	BTL2, PO2
$\mathbf{C O 2}$	knowledge to conceptualize the probabilities of events including frequentist and axiomatic approach. simultaneously, they will learn the notion of conditional probability including the concept of Bayes' Theorem,	BTL3, PO2
$\mathbf{C O 3}$	knowledge related to concept of discrete and continuous random variables and their probability distributions including expectation and moments,	BTL4, PO2
$\mathbf{C O 4}$	knowledge related to concept of generating functions and weak law of large numbers.	BTL4,PO2

About this Course

Statistics is an important field of math that is used to analyze, interpret, and predict outcomes from data. Descriptive statistics will teach you the basic concepts used to describe data. This is a great beginner course for those interested in Data Science, Economics, Psychology, Machine Learnin g, Sports analytics and just about any other field. This paper deals with the situation where there is uncertainty and how to measure that uncertainty by defining the probabilit y.

A. G \& S. G Siddhartha Degree College of Arts and Science (Autonomous), Vuyyuru

(An Autonomous College in the jurisdiction of Krishna University, Machilipatnam)

\section*{| STATISTICS | STATIIB | 2021-22 Onwards | B.Sc.(MSCs) |
| :--- | :--- | :--- | :--- |
 SEMESTER-I PAPER-I No. of Credits: 4 DESCRIPTIVE STATISTICS AND THEORY OF PROBABILITY
 Unit- I 12L}

Moments: Central and non-central moments and their inter-relationships, Sheppard's corrections for moments for grouped data. Skewness: Definition, measures of skewness by Karl Pearson's, Bowley's formulae and based on moments. Kurtosis: Definition, measures of kurtosis based on moments, Simple problems.

Unit- II

Probability-I: Definitions of various terms - Random experiments, trial, sample space, mutually exclusive, exhaustive , equally likely, favourable and independent events. DefinitionsMathematical, Statistical and Axiomatic definitions of probabilities. Law of addition of probabilities for two events and extension of general law of addition of probabilities. Boole's inequality for n events and real-life problems.

Unit -III

Probability-II : Conditional Probability-Definition - dependent and independence events, multiplication law of probability for two events, extension of multiplication law ofprobability. Pairwise independent events and conditions for mutual independence of n eventsand Baye's theorem and its applications and problems.

Unit- IV

12L
Random Variables: Univariate Random variables- Definition, Discrete and Continuous random variables - Probability mass function and probability density function with illustrations. Distribution function and its properties. Bivariate random variables- Definition, Discrete and Continuous bi-variate random variables- joint, marginal and conditional distributions- its properties. Distribution functions of the bivariate random variables and its properties. Independence of random variables, and simple problems.

UnitV:

12L
Mathematical Expectations: Definition, Mathematical expectation of function of a random variable, Properties of Expectations - Addition and Multiplication theorems of expectation. Properties of Variance and Covariance. Cauchy-Schwartz Inequality. Generating FunctionsDefinition of moment generating function (m.g.f), Cumulant generating function (c.g.f), Probability generating function (p.g.f) and Characteristic function (c.f) and statements of their properties with applications. Chebyshev's inequality and its applications. Statement of Weak Law of Large Numbers for identically and independently distributed (i.i.d) random variables with finite variance.
Text Book: Fundamentals of Mathematical Statistics, 12th Edition, $10^{\text {th }}$ September 2020,

S. C. Gupta and V. K. Kapoor, Sultan Chand \& Sons, New Delhi.

Recommended References books:

1. B.A/B.Sc. First Year Statistics(2010), Telugu Academy, Hyderabad.
2. Mathematical Statistics with Applications, 2009, K.M.Ramachandran and Chris
P.Tsokos Academic Press(Elsevier), Haryana.
3. Probability and Statistics,Volume I, D.Biswas, New central book Agency (P) Ltd, New Delhi.
4. An outline of Statistical theory, Volume Two,3rd Edition,201 0(with corrections)
A.M.Goon,M.K. Gupta, B.Dasgupta ,The World Press Pvt.Ltd., Kolakota.
5. Sanjay Arora and BansiLal:. New Mathematical Statistics, SatyaPrakashan, New Delhi.

Websites of Interest:

http://onlinestatbook.com/rvls/index.html

Co-Curricular Activities in the class:

1. Pictionary
2. Case Studies on topics in field of statistics
3. Snap test and Open Book test
4. Architectural - To be build the procedures
5. Extempore - Random concept to students
6. Interactive Sessions
7. Teaching through real world examples

Model Paper Structure

Section A: Answer FIVE questions out of EIGHT questions (5 x SM=25 M)
Section B: Answer FIVE questions out of FIVE questions with internal choice . $(5 \times 10 \mathrm{M}=\mathrm{SOM})$

A. G \& S. G Siddhartha Degree College of Arts and Science (Autonomous), Vuyyuru

(An Autonomous College in the jurisdiction of Krishna University, Machilipatnam)

\section*{| STATISTICS | STATIIB | 2021-22 Onwards | B.Sc.(MSCs) |
| :--- | :--- | :--- | :--- |}

Model Paper

Section-A

Answer any FIVE of the following

$5 \times 5=25$ Marks

1. Show that for discrete distributions $\beta_{1}>1$
2. State and prove addition theorem of probability for two events
3. If A and B are independent events, then prove that
i) $\bar{A} a n d \bar{B} i i \overline{)} \bar{A} a n d \bar{B}$ are also independent
4. Define the "distribution function" (or cumulative distribution function) of a random variable and state its essential properties.
5. Explain the concepts marginal and conditional probability distributions.
6. Show that the mathematical expectation of the sum of two random variables is the sum of their individual expectations.
(L-3, C0-3)
7. Define moment generating function (m.g.f.) of a random variable X. If $M_{X}(t)$ is the m.g.f. of a random variable X about the origin, show that the moment μ_{r}^{\prime} is given by

$$
\begin{equation*}
\mu_{r}^{\prime}\left[\frac{d^{r}}{d t^{r}} M_{X}(t)\right]_{t=0} \tag{L-1,C0-4}
\end{equation*}
$$

8. Explain the concept of "weak law of large numbers".

Section- B

Answer ALL the questions

9. A) Define moments. Establish the relationship between the moments about mean, (Central moments) in terms of moments about any arbitrary point and vice versa.
(L-3,C0-1)
(OR)
B) The scores in Statistics of 250 candidates appearing at an examination have Mean $=39.72$, variance $=97.80,3^{\text {rd }}$ central moment and fourth central moments are -114.18 and $28,396.14$. It was later found on scrutiny that the score 61 of a candidate has been wrongly recorded as 51.Make necessary corrections in the given values of the mean and the central moments.
(L-3, C0-1)
10. A) State and Prove Boole's inequality.
B) For two events A and B, prove that
(L-1, C0-2)
(i) $P(A n B)=P(B)-P(A n B)$
(ii) $P(A n B)=P(A)-P(A n B)$
(iii) if $B e A$ then $P(A n B)=P(A)-P(B)$ (iv) If $A c B$ then $P(A n B)=P(B)-P(A)$
11. A) It is $8: 5$ against the wife who is 40 years old living till she is 70 and $4: 3$ against her husband now 50 living till he is 80 . Find the probability that
(i) Both will be alive,
(ii) None will be alive,
(iii) Only wife will be alive,
(v) Only one will be alive,
(iv) Only husband will be alive,
(vi) At least one will be alive. (L-3, C0-2)
(OR)
B) A and B are two weak students of statistics and their chances of solving a problem in statistics correctly are $1 / 6$ and $1 / 8$ respectively. If the probability of their making a common error is $1 / 525$ and they obtain the same answer, find the probability that their answer is correct. (L-3, C0-2)
12. A) Let Xbe a random variable with cumulative distribution function

$$
\begin{aligned}
& 0 \text {, if } x<0 \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ccc}
\mathrm{x}+1 & \text { if }-3 \\
2 & -5 ; & x<l
\end{array} \\
& 1 \text {, if } x: 2: 1
\end{aligned}
$$

Find

(iv) $\mathrm{P}(0<x \leq \pm\}$ v) $\mathrm{P}(x=3 / 4 \mathrm{~J}$
(OR)
B) Two discrete random variables X and Y have the joint probability density
function: $\mathrm{p}(\mathrm{x}, \mathrm{y})=\frac{A x e-<p Y(l-p y-y}{y!(x-\mathrm{y})!}, y=0,1,2, \ldots, x ; x=0,1,2 \ldots$
Where are constants with , $1,>0 \& 0<p<1$ are constants.
Find (i) The marginal probability density functions ofX and Y.
(i) The conditional distribution of Y for a given X and of X for a given Y .
(L-5, C0-3)
13. A) Explain the variance of a Linear Combination of Random Variables. (L-2, C0-4)

(OR)

B) (i) Define characteristic function of random variables and state its properties.
(ii) State and Prove Chebychev's inequality.

A. G \& S. G Siddhartha Degree College of Arts and Science (Autonomous), Vuyyuru

(An Autonomous College in the jurisdiction of Krishna University, Machilipatnam)

STATISTICS	STATIIB	2021-22 Onwards	B.Sc.(MSCs)

SEMESTER-I Practical - I: Descriptive Statistics No of Credits: 1

CO.NO	Upon successful completion of this course, students should have the knowledge and skills to:	Mapping
$\mathbf{C O 1}$	draw the suitable diagram and graphs of the given sample data	P02
$\mathbf{C O 2}$	Analyze the uni-variate data using statistical techniques.	P02

List of Practicals

I. Diagrams \& Graphs- Bar, Pie, Histogram, frequency polygon, and Ogive curves
2. Computation of measures of central tendency- Arithmetic Mean, Geometric mean and Harmonic Mean - Grouped Data.
3. Computation of measures of central tendency- Median, Mode and Partition Values Grouped Data.
4. Computation of measures of Dispersion - Quartile Deviation, Mean Deviation, Standard Deviation, Variance and Coefficient of Variation - Grouped Data.
5. Computation of non-central, central moments, 1 and 2 and Sheppard's corrections for grouped data.
6. Computation of central moments, 1 and 2 and Sheppard's corrections when non -central moments are given.
7. Computation of Karl Pearson's coefficients, Bowley's coefficients of Skewness and coefficients of skewness based on moments - Grouped Data
Note: Training shall be on establishing formulae in Excel cells and derive the results. The excel output shall be exported to MS word for writing inference.

Reference Books

1. Practical Manual -Prepared by the Department Faculty Members
2. K.V.S. Sarma: Statistics Made Simple: Do it yourself on PC. PHI

Websites of Interest: http://www.statsci .org/datasets.html

